Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heteroepitaxial Growth of GaSb Nanotrees with an Ultra-Low Reflectivity in a Broad Spectral Range

Identifieur interne : 000515 ( Chine/Analysis ); précédent : 000514; suivant : 000516

Heteroepitaxial Growth of GaSb Nanotrees with an Ultra-Low Reflectivity in a Broad Spectral Range

Auteurs : RBID : Pascal:12-0193266

Descripteurs français

English descriptors

Abstract

We report on the growth of GaSb nanotrees on InAs {1?1?1?}B substrates by chemical beam epitaxy. GaSb nanotrees form by the nucleation of Ga droplets on the surface of <1 1?1?>B oriented GaSb nanowires followed by the epitaxial growth of branches catalyzed by these Ga droplets. In the tip region, the trunks of the GaSb nanotrees are periodically twinned, which is attributed to a change of the effective V/III ratio at the later stage of growth as a consequence of the change in surface structure. The reflectivity of a forest of nanotrees was measured for a broad spectral range and compared to the reflectivity of a GaSb (1?1?1?)B wafer and of GaSb nanowires. At wavelengths from 500 to 1700 nm, the presence of GaSb nanotrees decreased the reflection by three orders of magnitude compared to a blank GaSb substrate.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0193266

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Heteroepitaxial Growth of GaSb Nanotrees with an Ultra-Low Reflectivity in a Broad Spectral Range</title>
<author>
<name>CHENGLIN YAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Max Planck Institute of Microstructure Physics, Weinberg 2</s1>
<s2>06120 Halle</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>06120 Halle</wicri:noRegion>
<wicri:noRegion>Weinberg 2</wicri:noRegion>
<wicri:noRegion>06120 Halle</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIAOPENG LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Max Planck Institute of Microstructure Physics, Weinberg 2</s1>
<s2>06120 Halle</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>06120 Halle</wicri:noRegion>
<wicri:noRegion>Weinberg 2</wicri:noRegion>
<wicri:noRegion>06120 Halle</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Martin-Luther-University</s1>
<s2>Halle-Wittenberg 06120 Halle</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>06120 Halle</wicri:noRegion>
<wicri:noRegion>Martin-Luther-University</wicri:noRegion>
<wicri:noRegion>Martin-Luther-University</wicri:noRegion>
</affiliation>
</author>
<author>
<name>KEYA ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials and Chemical Engineering, Hanyang University</s1>
<s2>Ansan, Gyeonggi-do 426-791</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Ansan, Gyeonggi-do 426-791</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ANLIAN PAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>College of Physics and Microelectronics Science, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University</s1>
<s2>Changsha 410082</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha 410082</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Werner, Peter" uniqKey="Werner P">Peter Werner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Max Planck Institute of Microstructure Physics, Weinberg 2</s1>
<s2>06120 Halle</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>06120 Halle</wicri:noRegion>
<wicri:noRegion>Weinberg 2</wicri:noRegion>
<wicri:noRegion>06120 Halle</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mensah, Samuel L" uniqKey="Mensah S">Samuel L. Mensah</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Max Planck Institute of Microstructure Physics, Weinberg 2</s1>
<s2>06120 Halle</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>06120 Halle</wicri:noRegion>
<wicri:noRegion>Weinberg 2</wicri:noRegion>
<wicri:noRegion>06120 Halle</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vogel, Alexander T" uniqKey="Vogel A">Alexander T. Vogel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Max Planck Institute of Microstructure Physics, Weinberg 2</s1>
<s2>06120 Halle</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>06120 Halle</wicri:noRegion>
<wicri:noRegion>Weinberg 2</wicri:noRegion>
<wicri:noRegion>06120 Halle</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Volker" uniqKey="Schmidt V">Volker Schmidt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Max Planck Institute of Microstructure Physics, Weinberg 2</s1>
<s2>06120 Halle</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>06120 Halle</wicri:noRegion>
<wicri:noRegion>Weinberg 2</wicri:noRegion>
<wicri:noRegion>06120 Halle</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0193266</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0193266 INIST</idno>
<idno type="RBID">Pascal:12-0193266</idno>
<idno type="wicri:Area/Main/Corpus">001E84</idno>
<idno type="wicri:Area/Main/Repository">001B15</idno>
<idno type="wicri:Area/Chine/Extraction">000515</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalysts</term>
<term>Chemical beam epitaxy</term>
<term>Droplets</term>
<term>Epitaxial layers</term>
<term>Gallium</term>
<term>Gallium antimonides</term>
<term>Growth mechanism</term>
<term>Heteroepitaxy</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Nucleation</term>
<term>Reflectivity</term>
<term>Surface structure</term>
<term>Wafers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Hétéroépitaxie</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Facteur réflexion</term>
<term>Mécanisme croissance</term>
<term>Arséniure d'indium</term>
<term>Epitaxie jet chimique</term>
<term>Nucléation</term>
<term>Gouttelette</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Couche épitaxique</term>
<term>Catalyseur</term>
<term>Structure surface</term>
<term>Antimoniure de gallium</term>
<term>Gallium</term>
<term>Pastille électronique</term>
<term>GaSb</term>
<term>Substrat GaSb</term>
<term>InAs</term>
<term>6460Q</term>
<term>8107V</term>
<term>8107B</term>
<term>8116H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the growth of GaSb nanotrees on InAs {1?1?1?}
<sub>B</sub>
substrates by chemical beam epitaxy. GaSb nanotrees form by the nucleation of Ga droplets on the surface of <1 1?1?>
<sub>B</sub>
oriented GaSb nanowires followed by the epitaxial growth of branches catalyzed by these Ga droplets. In the tip region, the trunks of the GaSb nanotrees are periodically twinned, which is attributed to a change of the effective V/III ratio at the later stage of growth as a consequence of the change in surface structure. The reflectivity of a forest of nanotrees was measured for a broad spectral range and compared to the reflectivity of a GaSb (1?1?1?)
<sub>B</sub>
wafer and of GaSb nanowires. At wavelengths from 500 to 1700 nm, the presence of GaSb nanotrees decreased the reflection by three orders of magnitude compared to a blank GaSb substrate.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Heteroepitaxial Growth of GaSb Nanotrees with an Ultra-Low Reflectivity in a Broad Spectral Range</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHENGLIN YAN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XIAOPENG LI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KEYA ZHOU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ANLIAN PAN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WERNER (Peter)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MENSAH (Samuel L.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>VOGEL (Alexander T.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>SCHMIDT (Volker)</s1>
</fA11>
<fA14 i1="01">
<s1>Max Planck Institute of Microstructure Physics, Weinberg 2</s1>
<s2>06120 Halle</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials and Chemical Engineering, Hanyang University</s1>
<s2>Ansan, Gyeonggi-do 426-791</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>College of Physics and Microelectronics Science, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University</s1>
<s2>Changsha 410082</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Martin-Luther-University</s1>
<s2>Halle-Wittenberg 06120 Halle</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1799-1805</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000509673310110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0193266</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on the growth of GaSb nanotrees on InAs {1?1?1?}
<sub>B</sub>
substrates by chemical beam epitaxy. GaSb nanotrees form by the nucleation of Ga droplets on the surface of <1 1?1?>
<sub>B</sub>
oriented GaSb nanowires followed by the epitaxial growth of branches catalyzed by these Ga droplets. In the tip region, the trunks of the GaSb nanotrees are periodically twinned, which is attributed to a change of the effective V/III ratio at the later stage of growth as a consequence of the change in surface structure. The reflectivity of a forest of nanotrees was measured for a broad spectral range and compared to the reflectivity of a GaSb (1?1?1?)
<sub>B</sub>
wafer and of GaSb nanowires. At wavelengths from 500 to 1700 nm, the presence of GaSb nanotrees decreased the reflection by three orders of magnitude compared to a blank GaSb substrate.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60D60Q</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A16H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Hétéroépitaxie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Heteroepitaxy</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Heteroepitaxia</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Epitaxie jet chimique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Chemical beam epitaxy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nucléation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nucleation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gouttelette</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Droplets</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Catalyseur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Catalysts</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Structure surface</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Surface structure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Antimoniure de gallium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium antimonides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Pastille électronique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Wafers</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>GaSb</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Substrat GaSb</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>6460Q</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8116H</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>149</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000515 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000515 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0193266
   |texte=   Heteroepitaxial Growth of GaSb Nanotrees with an Ultra-Low Reflectivity in a Broad Spectral Range
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024